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The Ritz method is applied in a three-dimensional (3-D) analysis to obtain
accurate frequencies for thick, linearly tapered, annular plates. The method is
formulated for annular plates having any combination of free or fixed boundaries
at both inner and outer edges. Admissible functions for the three displacement
components are chosen as trigonometric functions in the circumferential
co-ordinate, and algebraic polynomials in the radial and thickness co-ordinates.
Upper bound convergence of the non-dimensional frequencies to the exact values
within at least four significant figures is demonstrated. Comparisons of results for
annular plates with linearly varying thickness are made with ones obtained by
others using 2-D classical thin plate theory. Extensive and accurate (four
significant figures) frequencies are presented for completely free, thick, linearly
tapered annular plates having ratios of average plate thickness to difference
between outer radius (a) and inner radius (b) ratios (hm /L) of 0·1 and 0·2 for
b/L=0·2 and 0·5. All 3-D modes are included in the analyses; e.g., flexural,
thickness-shear, in-plane stretching, and torsional. Because frequency data given
is exact to at least four digits, it is benchmark data against which the results from
other methods (e.g., 2-D thick plate theory, finite element methods) and may be
compared. Throughout this work, Poisson’s ratio n is fixed at 0·3 for numerical
calculations.
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1. INTRODUCTION

Most of the thick circular and annular plate vibration analyses have been
performed with two-dimensional (2-D), sixth order plate theory, usually of the
type ascribed to Mindlin [1]. Such solutions are generally valid for the lower
frequency, flexural modes of moderately thick plates. However, in recent years
considerable attention has been given to solutions for plates of constant thickness
obtained from the exact, three-dimensional (3-D) theory of elasticity [2–9], which
are valid for arbitrary thickness. In such cases the terminology ‘‘circular and
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annular plates’’ may lose their meaning, especially as the plates become very thick,
and terms such as ‘‘solid and hollow cylinders’’ better describe the problem. As
computers and analytical procedures become more efficient, three-dimensional
solutions will definitely become increasingly important in the future, not only for
obtaining accurate frequencies and mode shapes, but for verifying the accuracies
of two-dimensional plate theories.

In the case of plates with variable thickness, the governing differential equation
of motion of 2-D theory is found to have variable coefficients, and this fact
increases the difficulty of solution. Nevertheless, considerable attention has been
paid to variable thickness plates in recent years. As regards circular and annular
plates of variable thickness, a great deal of information is available for various
types of thickness variations and conditions at the boundary of the plates. Leissa’s
book [10] and series of review articles [11–13] on plate vibrations are reasonably
thorough sources of information for the periods preceding 1966 [10], and from
1973 to 1985 [11–13].

Early 2-D investigations of vibrations of circular and annular plates with
variable thickness were made by Conway [14, 15], Kovalenko [16], Kazantseva
[17], and Ehrich [18] using classical, thin plate theory. Kovalenko’s [16] primary
work was a direct attack upon the differential equation by assuming a series form
of solution. Boundary conditions led to an infinite characteristic determinant,
which was truncated for an approximate solution. Numerical results were not
given for completely free boundary conditions, but for edges free on the outside
and clamped on the inside.

Sony and Amba Rao [19] conducted a study of the free axisymmetric vibrations
of orthotropic circular plates with linear variation in thickness. The governing
differential equations were derived on the basis of Mindlin plate theory. The
Chebyshev collocation technique was adopted to solve the differential equations.

Annular Mindlin plates of varying thickness were also considered by Irie et al.
[20]. Gupta and Lal [21] analyzed the axisymmetric vibrations of polar orthotropic
Mindlin annular plates of variable thickness using a Chebyshev collocation
technique. Singh and Goel [22], and Singh and Tyagi [23] studied elliptic and
circular plates using the Ritz method and obtained a sequence of approximations.
In another series of papers Singh and Chakraverty [24–29] used characteristic
orthogonal polynomials with the same method to obtain the frequencies and mode
shapes of circular and elliptic plates with constant and variable thickness under
different boundary conditions.

Recently, employing the Ritz method, Singh and Saxena [30] studied the
axisymmetric transverse vibration of a circular plate with two different linear
variations in thickness; one in the central core and the other in the outer annular
region. The boundary was taken to be either clamped or simply supported.
Gutierrez et al. [31] investigated the vibration and buckling of circular plates of
thickness varying according to the functional relation h0[1+ g(r̄/a)n], where n is
a positive integer, using the classical Ritz method.

However, none of the above references for variable thickness plates
determined frequencies by 3-D analysis. The primary objective of the present
work is to present truly accurate values of the free-vibration frequencies of thick,
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linearly tapered, annular plates. Besides presenting the method of analysis and
establishing its accuracy by means of convergence studies, comparisons are made
with other 2-D results. The accurate 3-D results presented here serve as
benchmarks against which other approximate methods (e.g., finite element, finite
difference methods) and 2-D plate theories, first order and higher order, may be
tested.

2. METHOD OF ANALYSIS

A representative annular plate with thickness (h) varying linearly along the
radial direction, with inner radius b, outer radius a, inner edge thickness hi , and
outer edge thickness ho , is shown in Figure 1.

The local co-ordinate system (s, u, z), also shown in the figure, is used in the
analysis. The radial (s) and thickness (z) co-ordinates are measured normally from
the inner edge and the mid-plane of the annular plate, respectively, and u is the
circumferential angle. The radial co-ordinate could equally well originate at the
center of the plate, but is used in the present manner to be consistent with a more
general method of analysis applicable to thick shells having variable curvature and
thickness [32].

To analyze the free vibrations of the annular plate the kinetic energy (T) and
strain (potential) energy (V) will be developed in terms of three displacement
components u, v, and w, which are taken positive in the directions of increasing
s, u, and z (see Figure 1).

Figure 1. Cross-section of a thick, linearly tapered annular plate with local co-ordinate system
(s, u, z).
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The kinetic energy is simply

T= 1
2 gV

r(u̇2 + v2 + ẇ2)(s+ b) ds du dz, (1)

where r is mass density, the dots (
.
) denote time derivatives, and the integration

is carried out over the domain (V) of the annular plate.
The strain (potential) energy of deformation is expressed in terms of the stresses

(sij ) and strains (eij ) as

V= 1
2 gV

(sssess + suueuu + szzezz + ssuesu + sszesz + suzeuz )(s+ b) ds du dz. (2)

The well-known stress–strain equations of isotropic, linear elasticity are:

sii = l(ess + ezz + euu )+2Geii , sij =Geij (i$ j), (3)

where l and G are the Lamé parameters (G. Lamé 1852), expressed in terms of
Young’s modulus (E) and Poisson’s ratio (n) for an isotropic solid as

l=En/(1+ n)(1−2n), G=E/2(1+ n). (4)

The three-dimensional strains are found to be related to the displacements by

ess = u,s , euu =[1/(s+ b)](u+ v,u ), ezz =w,z , (5a–c)

esu =[1/(s+ b)][u,u − v+(s+ b)v,s ], esz = u,z +w,s ,

euz =[1/(s+ b)][(s+ b)v,z +w,u ], (5d–f)

where subscripted symbols following commas denote differentiations.
Substituting equations (3) and (5) into equation (2) results in

V= 1
2 gV

[l(ess + euu + ezz )2 +G{2(e2
ss + e2

uu + e2
zz)

+ e2
su + e2

sz + e2
uz}](s+ b) ds du dz. (6)

For convenience, the s and z co-ordinates are made dimensionless,

c0 s/L, z0 z/hm , (7)

where L is the radial width of the plate, a− b, and hm is the average plate thickness,
defined by hm 0 (hi + ho )/2.

For the free, undamped vibration, the time (t) response of the three
displacements is sinusoidal and, moreover, the circular symmetry of the plate
allows the displacements to be expressed by

u(c, u, z, t)=U(c, z) cos nu sin (vt+ a), (8a)

v(c, u, z, t)=V(c, z) sin nu sin (vt+ a), (8b)

w(c, u, z, t)=W(c, z) cos nu sin (vt+ a), (8c)
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where U, V, and W are displacement functions of c and z, v is a natural
frequency, a is an arbitrary phase angle determined by the initial conditions, and
n=0, 1, 2, . . . , a. By substituting equations (8) into the three partial differential
equations of motion for the body, expressed in cylindrical co-ordinates, one may
verify that these are proper assumed forms for the displacements, and that u and
t are thereby uncoupled from c and z.

A complementary set of functions may also be used for equations (8) replacing
cos nu by sin nu, and conversely. This gives the same vibratory mode shapes
rotated by p/2n in u, and the same frequencies, except for n=0. For n=0,
equations (8) yield the axisymmetric modes which involve only u and w (for
example, longitudinal and/or radial extension). However, the complementary set
for n=0 yields the torsional modes, which involve only v, uncoupled from u and
w. Thus, for the annular cross-section, there is no warping of the cross-section
during torsional vibration.

Using algebraic polynomials which are mathematically complete, displacement
functions U, V, and W in equations (8) which are capable of satisfying any
geometrical boundary conditions may be represented by

U= h s
I

i=0

s
J

j=0

Aijc
izj, V= h s

K

k=0

s
L

l=0

Bklc
kzl, W= h s

M

m=0

s
N

n=0

Cmnc
mzn,

(9a–c)

where i, j, k, l, m, and n are integers; I, J, K, L, M, and N are the highest degrees
of the polynomial terms; Aij , Bkl , and Cmn are arbitrary coefficients; and h depends
upon the boundary conditions to be enforced. For example: (1) completely free:
h=1; (2) inner edge fixed, outer edge free: h=c; (3) outer edge fixed, inner edge
free: h=c−1; (4) both inner and outer edges fixed: h=c(c−1).

The h functions shown above impose only the necessary geometric constraints
at the boundaries, which are required when using the Ritz method, and ignore
boundary conditions involving stress. Together with the algebraic polynomials,
equations (9), they form mathematically complete sets (reference [33], pp. 266–268)
that are capable of representing the free vibration mode shapes of an annular plate
to any degree of accuracy desired.

The Ritz method uses the maximum energy functionals for the vibrating system.
The maximum potential energy (Vmax ) during a vibratory cycle is due to the strain
energy of deformation. Using equations (6)–(8) it becomes

Vmax =
LG
2 g

1

0 g
d(c)/2

−d(c)/2 $6l

G
(K1 +K2 +K3)2 +2(K2

1 +K2
2 +K2

3)+K2
47G1

+ (K2
5 +K2

6)G2%r* dz dc, (10)
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where

K1 0 (U+ nV)/r*, K2 0 (hm /L)U,c , K3 0W,z , K4 0U,z +(hm /L)W,c ,

K5 0V,z − nW/r*, K6 0 (nU+V)/r*− (hm /L)V,c , (11)

and r* is defined by

r*0 (s+ b)/hm =(c+ b/L)L/hm , (12)

and d(c) is the non-dimensional thickness, defined by

d(c)0 h(s)/hm =[2/(1+ h*)][(1− h*)c+ h*], (13)

where h* is the taper ratio of hi /ho , and G1 and G2 are constants defined by

G1 0g
2p

0

cos2 nu du=62p,
p,

if n=0
if ne 17, G2 0g

2p

0

sin2 nu du=60,
p,

if n=0
if ne 17.

(14)

It is known that l and G have the same dimensions as E from equations (4). The
non-dimensional constant l/G in equation (10) involves only n; i.e.,
l/G=2n/(1−2n).

The maximum kinetic energy during a vibratory cycle is

Tmax =
rLh2

mv
2

2 g
1

0 g
d(c)/2

−d(c)/2

[(U2 +W2)G1 +V2G2]r* dz dc. (15)

The eigenvalue problem for finding natural frequencies and mode shapes is
determined from the Ritz minimizing equations. For this present problem, these
are

1(Vmax −Tmax )
1Aij

=0, 0i=0, 1, 2, . . . , I
j=0, 1, 2, . . . , J1, (16a)

1(Vmax −Tmax )
1Bkl

=0, 0k=0, 1, 2, . . . , K
l=0, 1, 2, . . . , L1, (16b)

1(Vmax −Tmax )
1Cmn

=0, 0m=0, 1, 2, . . . , M
n=0, 1, 2, . . . , N 1. (16c)
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The minimizing conditions of equations (16) produce a set of algebraic
equations (or Ritz system) consisting of [(I+1)(J+1)+ (K+1)(L+1)
+ (M+1)(N+1)] linear, homogeneous, algebraic equations with the same
number of unknowns Aij , Bkl , and Cmn . The equations can be written in the form

(K−LM)x= 0 or (KM−1 −LI)x= 0, (17)

where K and M are stiffness and mass matrices resulting from the maximum strain
energy (Vmax ) and the maximum kinetic energy (Tmax ), respectively, and L is an
eigenvalue of the vibrating system, expressed as the square of non-dimensional
frequency, v2h2

mr/G, and the vector x takes the form

x=(A00, A01, . . . , AIJ ; B00, B01, . . . , BKL ; C00, C01, . . . , CMN )T. (18)

T 1

Convergence of frequencies vazr/G of a completely free, annular plate with
linearly varying thickness along the radial direction for the five lowest modes for

n=2 with hi /ho =1/3, b/L=0·2, hm /L=0·2 and n=0·3

TZ TS DET 1 2 3 4 5

2 2 12 0·5029 1·847 3·587 4·127 8·684
2 4 24 0·4182 1·707 2·540 4·058 5·587
2 6 36 0·4166 1·692 2·514 4·050 5·066
2 8 48 0·4165 1·688 2·512 4·049 4·999
2 10 60 0·4165 1·687 2·512 4·049 4·995

3 2 18 0·4678 1·843 3·520 4·126 8·616
3 4 36 0·4064 1·704 2·355 4·057 5·343
3 6 54 0·4052 1·690 2·355 4·050 4·748
3 8 72 0·4051 1·686 2·334 4·048 4·692
3 10 90 0·4051 1·685 2·334 4·048 4·690

4 2 24 0·4602 1·842 3·450 4·124 8·610
4 4 48 0·4033 1·704 2·329 4·057 5·290
4 6 72 0·4022 1·690 2·310 4·050 4·676
4 8 96 0·4022 1·686 2·309 4·048 4·622
4 10 120 0·4021 1·685 2·309 4·048 4·620

5 2 30 0·4602 1·841 3·445 4·124 8·604
5 4 60 0·4033 1·704 2·328 4·057 5·287
5 6 90 0·4022 1·690 2·309 4·050 4·673
5 8 120 0·4022 1·686 2·308 4·048 4·620
5 10 150 0·4021 1·685 2·308 4·048 4·619

6 2 36 0·4598 1·841 3·435 4·124 8·604
6 4 72 0·4031 1·704 2·328 4·057 5·274
6 6 108 0·4022 1·690 2·309 4·050 4·670
6 8 144 0·4021 1·686 2·308 4·048 4·620
6 9 162 0·4021 1·686 2·308 4·048 4·619

Notes: TZ=total number of natural polynomial terms used in the z or z direction; TS=total
number of natural polynomial terms used in the s or c direction: DET=determinant order.
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Equation (17) represents the eigenvalue problem. For a non-trivial solution, the
determinant of the coefficient matrix is set to zero; that is to say =K−LM==0
or =KM−1 −LI==0 where I is an identity matrix and M−1 is the inverse of M. The
roots of the determinant are the eigenvalues. Substituting each eigenvalue back
into the equations generating the eigenvalue determinant yields the corresponding
eigenvector, and substituting the eigenvector into the displacement functions will
give the mode shape for each eigenvalue.

T 2

Non-dimensional frequencies vLzr/G of completely free, annular plates with
linearly varying thickness along the radial direction for b/L=0·2, hm /L=0·1 and

n=0·3

hi /ho

ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV
n Mode 0 1/3 1 3 a

0(T) 1 6·118 5·558 5·181 4·997 5·375
2 9·768 8·949 8·640 8·512 9·027
3 13·38 12·40 12·16 12·06 12·66
4 17·01 15·95 15·76 15·68 16·34
5 20·66 19·57 19·41 19·34 20·04

0(A) 1 (2) 0·3875 (2) 0·3198 (2) 0·3438 (2) 0·4334 (2) 0·6510
2 1·657 1·505 1·557 1·592 1·763
3 2·449 2·799 3·152 3·501 3·323
4 3·246 3·427 3·573 3·568 4·104
5 5·217 5·981 6·241 6·039 5·277

1 1 (4) 0·6589 (4) 0·6966 (4) 0·7851 (5) 0·8666 (5) 1·092
2 1·805 1·903 2·113 2·206 2·321
3 2·728 2·739 2·776 2·890 3·271
4 3·360 3·739 4·014 4·017 3·810
5 5·315 6·220 6·384 6·399 5·630

2 1 (1) 0·2368 (1) 0·2104 (1) 0·2085 (1) 0·2550 (1) 0·4005
2 1·211 1·298 1·339 1·343 1·502
3 1·338 1·686 1·995 2·310 2·620
4 2·219 2·742 3·026 3·046 2·973
5 3·691 4·049 4·080 4·192 4·667

3 1 (3) 0·6430 (3) 0·5562 (3) 0·4937 (3) 0·4919 (3) 0·6735
2 1·918 2·026 2·005 1·913 1·957
3 2·731 3·129 3·551 3·902 3·607
4 2·845 3·735 3·987 4·093 4·862
5 4·220 5·703 5·786 5·950 5·536

4 1 (5) 1·190 (5) 1·018 (5) 0·8572 (4) 0·7496 (4) 0·8893
2 2·773 2·851 2·734 2·502 2·366
3 3·650 4·268 4·684 4·762 4·200
4 3·929 4·809 4·980 5·288 6·296
5 4·925 6·999 7·428 7·359 6·311

Notes: T0 torsional mode; A0 axisymmetric mode; numbers in parentheses identify frequency
sequences.
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Figure 2. Cross-sections of annular plates with b/L=0·2 and hm /L=0·1: (a) hi /ho =0; (b)
hi /ho =1/3; (c) hi /ho =1; (d) hi /ho =3; (e) hi /ho =a.

As it is well-known, frequencies by the Ritz method converge in the manner of
upper bounds to the exact values. These upper bounds are improved by increasing
the numbers of polynomial terms in equations (9). Since the algebraic polynomials
of equations (9) form sets which are mathematically complete, as sufficient
numbers of terms are taken, monotonic convergence to the exact frequencies is
guaranteed.

3. CONVERGENCE STUDIES

A convergence study is based upon the fact that all the frequencies obtained by
the Ritz method should converge to their exact values in an upper bound manner.
If the results do not converge properly, or converge too slowly, it is likely that
the assumed displacements may be poor ones, or be missing some functions from
a minimal complete set of polynomials.

In Table 1, the results of a convergence study of nondimensional frequencies
vazr/G for n=2 are shown for the annular plate with linearly varying thickness
in the radial direction for hi /ho =1/3, b/L= hm /L=0·2, and n=0·3. This annular
plate is a thick one, for which classical plate theory would be inappropriate.

To make the study of convergence less complicated, equal numbers of
polynomial terms were taken in both the s or c-co-ordinate (i.e., I=K=M) and
z or z-co-ordinate (i.e., J=L=N), although some computational optimization
could be obtained for some configurations and some mode shapes by using
unequal numbers of polynomial terms.
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The symbols TZ and TS in the table indicate the total numbers of polynomial
terms used in the z (or z) and s (or c) directions, respectively. Note that the
determinant order DET is related to TZ and TS as follows:

DET= 8 TZ×TS
2×TZ×TS
3×TZ×TS

for torsional modes (n=0)
for axisymmetric modes (n=0)

for general modes (ne 1) 9. (19)

T 3

Non-dimensional frequencies vLzr/G of completely free, annular plates with
linearly varying thickness along the radial direction for b/L=0·2, hm /L=0·2 and

n=0·3

hi /ho

ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV
n Mode 0 1/3 1 3 a

0(T) 1 6·088 5·551 5·181 4·991 5·348
2 9·719 8·938 8·640 8·502 8·981
3 10·82 12·39 12·16 12·05 12·60
4 13·31 13·78 15·76 15·51 12·82
5 16·73 15·93 18·85 15·66 16·25

0(A) 1 (2) 0·7306 (2) 0·6173 (2) 0·6687 (2) 0·8440 (2) 1·253
2 2·448 2·717 2·804 2·878 3·204
3 3·000 2·798 3·150 3·559 4·077
4 5·548 5·644 5·829 5·782 5·703
5 8·376 8·242 8·047 8·120 8·553

1 1 (4) 1·195 (4) 1·286 (4) 1·454 (5) 1·611 (5) 2·016
2 2·727 2·738 2·776 2·888 3·263
3 3·244 3·332 3·597 3·718 3·945
4 5·717 6·062 6·340 6·300 6·131
5 6·978 6·537 6·368 6·577 7·284

2 1 (1) 0·4392 (1) 0·4021 (1) 0·4062 (1) 0·4958 (1) 0·7641
2 (5) 1·336 (5) 1·685 1·995 2·308 2·610
3 2·135 2·308 2·416 2·459 2·765
4 3·925 4·048 4·078 4·189 4·654
5 4·038 4·619 5·001 5·080 5·131

3 1 (3) 1·140 (3) 1·027 (3) 0·9422 (3) 0·9540 (3) 1·295
2 2·720 3·124 3·480 3·408 3·560
3 3·273 3·445 3·551 4·090 4·844
4 4·954 5·698 5·783 5·946 6·147
5 5·630 6·023 6·356 6·330 6·534

4 1 2·002 1·805 (5) 1·592 (4) 1·437 (4) 1·707
2 3·907 4·260 4·577 4·351 4·278
3 4·530 4·638 4·684 5·284 6·284
4 6·271 7·322 7·421 7·533 7·095
5 7·241 7·419 7·671 7·605 8·333

Notes: T0 torsional mode; A0 axisymmetric mode; numbers in parentheses identify frequency
sequences.
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Figure 3. Cross-sections of annular plates with b/L=0·2 and hm /L=0·2: (a) hi /ho =0; (b)
hi /ho =1/3; (c) hi /ho =1; (d) hi /ho =3; (e) hi /ho =a.

In the table, there are five columns of data corresponding to the five lowest
frequencies. The frequencies in bold and underlined indicate the best convergent
values in each column with the smallest determinant size. The zero frequencies
corresponding to the rigid body modes have been removed. The values of TZ and
TS begin with 2, increasing TS by 2 up to 10, and TZ by 1 up to 6. When TZ
is 6, TS is taken as 9 instead of 10, since it would require a tremendous computer
time and memory to evaluate the stiffness and mass matrices. Frequencies in the
table are given to four digits.

It is interesting to note that the frequencies seen in Table 1 for the first, second
and fourth modes are reasonably accurate even when only two polynomial terms
are taken through the thickness (TZ=2), provided enough terms are used in the
radial direction (TSe 8). However, the third and fifth frequencies are quite
inaccurate TZ=2, being 8·8 and 8·1% too high, respectively. This low degree
solution corresponds to the Mindlin thick plate theory, which permits no variation
in z for the w displacement, and restricts u and v to vary linearly with z.

One may also note that the mode shapes uncouple into ones which are either
symmetric or antisymmetric with respect to the mid-plane (z=0) of the plate. The
lower frequency modes described in Table 1 are all antisymmetric, involving
predominantly bending and thickness-shear. The symmetric modes (e.g., radial
and axial extension) are higher frequency ones.
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Additional convergence studies were also made for other circumferential
numbers (n=0, torsional and axisymmetric; and n=1) by Kang [32]. They
showed similar rates of convergence.

4. NUMERICAL RESULTS AND DISCUSSION

Tables 2–5 present accurate (four significant figure) nondimensional frequencies
vazr/G of completely free, thick, linearly tapered, annular plates. Figures 2–5

T 4

Non-dimensional frequencies vLzr/G of completely free, annular plates with
linearly varying thickness along the radial direction for b/L=0·5, hm /L=0·1 and

n=0·3

hi /ho

ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV
n Mode 0 1/3 1 3 a

0(T) 1 6·912 6·059 5·604 5·461 5·990
2 11·41 10·28 9·971 9·890 10·62
3 15·97 14·73 14·52 14·46 15·29
4 20·57 19·30 19·14 19·09 19·98
5 25·20 23·93 23·80 23·75 24·68

0(A) 1 (2) 0·3497 (2) 0·2665 (2) 0·2713 (2) 0·3494 (2) 0·5363
2 1·932 1·694 1·709 1·711 1·919
3 2·181 2·405 2·629 2·864 3·113
4 3·921 4·092 4·221 4·094 3·889
5 6·392 7·301 7·580 7·294 6·354

1 1 (4) 0·5403 (4) 0·4835 (4) 0·5564 (5) 0·6836 (5) 0·9371
2 2·000 1·827 1·898 1·937 2·133
3 2·704 2·756 2·840 2·997 3·354
4 3·975 4·193 4·351 4·238 4·019
5 6·438 6·954 6·680 6·661 6·447

2 1 (1) 0·1762 (1) 0·1551 (1) 0·1545 (1) 0·1920 (1) 0·2907
2 0·9149 0·9044 1·019 1·134 1·406
3 1·004 1·249 1·421 1·542 1·594
4 2·200 2·194 2·401 2·528 2·716
5 4·052 4·050 4·096 4·260 4·437

3 1 (3) 0·4861 (3) 0·4221 (3) 0·3896 (3) 0·4240 (3) 0·6100
2 1·348 1·436 1·566 1·631 1·846
3 2·282 2·700 3·051 3·283 3·388
4 2·516 2·741 3·105 3·361 3·567
5 4·397 4·955 5·338 5·381 5·130

4 1 (5) 0·9141 (5) 0·7884 (5) 0·6900 (4) 0·6643 (4) 0·8692
2 1·828 2·074 2·196 2·186 2·303
3 2·931 3·433 3·943 4·112 4·048
4 3·533 4·003 4·472 4·998 5·494
5 4·757 5·574 6·136 6·292 5·960

Notes: T0 torsional mode; A0 axisymmetric mode; numbers in parentheses identify frequency
sequences.
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Figure 4. Cross-sections of annular plates with b/L=0·5 and hm /L=0·1: (a) hi /ho =0; (b)
hi /ho =1/3; (c) hi /ho =1; (d) hi /ho =3; (e) hi /ho =a.

show the configurations corresponding to Tables 2–5, respectively. Thirty
frequencies are given for each configuration, which arise from six circumferential
mode numbers (n), (i.e., n=0(T), 0(A), 1, 2, 3, 4) and the first five modes for each
value of n, where T and A indicate torsional and axisymmetric modes, respectively.
Numbers in parentheses identify the first five frequencies for each configuration.
The zero frequencies of rigid body modes are omitted from the tables.

It is seen that irrespective of the aspect ratio (b/L), thickness ratio (hm /L),
and the taper ratio (hi /ho ), the fundamental, second, and third frequencies occur
with mode shapes having two (n=2), zero (n=0, axisymmetric), and three
(n=3) circumferential waves, respectively. It is known that the fundamental
mode is in bending with n=2 for a completely free annular plate with constant
thickness [10].

Table 2 shows that, for the moderately thick plate (hm /L=0·1) having a
relatively small hole (b/L=0·2, which corresponds to b/a=1/6), most of the
frequencies are not changed greatly by the drastic variation of inner-to-outer
thickness ratio (0E hi /ho Ea) when the average thickness (hm ) is kept constant.
However, the first two modes (n=2 and 0(A)) are notable exceptions to this, with
the frequencies nearly doubling as the plate varies from having a sharp inner edge
(hi /ho =0) to having a sharp outer edge (hi /ho =a), as shown in Figure 2.
Considering thicker plates (hm /L=0·2, Table 3) or ones with a larger hole
(b/L=0·5, Table 4), the frequencies are seen to be somewhat more greatly affected
with changing hi /ho .
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One also sees in Tables 2–5 that for a plate having a fixed average thickness (hm )
the first two frequencies are always largest when the greatest thickness is at the
inner edge (hi /ho =a), but not necessarily for the other modes.

As expected in Tables 2–5, the torsional (n=0(T)) frequencies, are much greater
than the axisymmetric (n=0(A)) frequencies. This is because, even for these thick
plate configurations, the axisymmetric modes are predominantly bending, with the
largest displacement components being normal to the plate middle surface,

T 5

Non-dimensional frequencies vLzr/G of completely free, annular plates with
linearly varying thickness along the radial direction for b/L=0·5, hm /L=0·2 and

n=0·3

hi /ho

ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV
n Mode 0 1/3 1 3 a

0 1 6·879 6·051 5·604 5·454 5·960
2 11·36 10·26 9·971 9·877 10·57
3 13·62 14·72 14·52 14·44 14·98
4 15·88 17·31 19·14 18·50 15·21
5 20·45 19·28 23·56 19·06 19·87

0 1 (2) 0·6639 (2) 0·5186 (2) 0·5316 (2) 0·6838 (2) 1·034
2 2·181 2·405 2·628 2·862 3·109
3 3·513 3·086 3·112 3·123 3·501
4 6·721 6·770 6·920 6·790 6·690
5 10·116 8·970 8·614 8·783 9·948

1 1 (4) 0·9887 (4) 0·9142 (4) 1·042 (4) 1·254 1·6640
2 2·703 2·756 2·839 2·995 3·349
3 3·620 3·296 3·388 3·420 3·742
4 6·796 6·908 6·676 6·650 6·808
5 7·536 6·942 7·083 6·948 7·139

2 1 (1) 0·3332 (1) 0·3001 (1) 0·3027 (1) 0·3729 (1) 0·5517
2 (5) 1·003 (5) 1·248 1·421 1·539 (4) 1·586
3 1·651 1·675 1·886 2·099 2·572
4 3·932 3·877 4·095 4·257 4·542
5 4·050 4·049 4·145 4·274 4·747

3 1 (3) 0·8941 (3) 0·8237 (3) 0·7536 (3) 0·8237 (3) 1·164
2 2·276 2·975 2·835 2·975 3·372
3 2·428 3·356 3·051 3·356 3·550
4 4·423 5·446 5·216 5·446 5·681
5 5·680 5·781 5·620 5·781 6·404

4 1 1·621 1·450 (5) 1·310 (5) 1·283 (5) 1·6638
2 3·291 3·646 3·862 3·901 4·164
3 3·519 3·998 4·472 4·993 5·470
4 5·064 5·799 6·461 6·708 6·806
5 7·184 7·188 7·197 7·313 7·978

Notes: T0 torsional mode; A0 axisymmetric mode; numbers in parentheses identify frequency
sequences.
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Figure 5. Cross-sections of annular plates with b/L=0·5 and hm /L=0·2: (a) hi /ho =0; (b)
hi /ho =1/3; (c) hi /ho =1; (d) hi /ho =3; (e) hi /ho =a.

whereas the torsional modes involve shearing, with the sole component being
tangent to the plate middle surface, which entails greater stiffness than bending.

Comparing the torsional frequencies (n=0(T)) between Tables 2 and 3, it is
seen that, for uniform thickness (hi /ho =1), the first four (5·181, 8·640, 12·16,
15·76) are unaffected by doubling the plate thickness. These are counter-rotating
modes, where the inner portion moves oppositely to its adjacent portion, creating
nodal cylindrical surfaces of no displacement between them. These frequencies are
obtainable as exact solutions, where the circumferential displacement (V) varies
with c (or s) as a Bessel function (cf. reference [34]). The same phenomenon is
seen for the plates with the larger holes, comparing Tables 4 and 5. However, it
is also seen that such relationships do not exist when the plate thickness is not
constant (hi /ho $ 1).

5. COMPARISONS WITH 2-D PLATE RESULTS

Ramaiah and Vijayakumar [35] made a thorough study of annular circular
plates with linear thickness variations, both increasing and decreasing with the
radius. They treated all nine possible combinations of clamped, simply supported,
and free edge conditions using various taper ratios (ho /hi or hi /ho ) and boundary
radii ratios (b/a). They employed the Ritz method with nine trial functions in the
radial direction, which should be sufficient to give accurate results. Their analysis
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is based upon the 2-D thin plate theory. Frequencies corresponding to
axisymmetric modes (n=0) as well as for modes with one (n=1) and two (n=2)
nodal diameters were obtained. The non-dimensional frequency parameter used
for the annular plate was given by 2(va2/hi )zr/E for hi q ho or 2(va2/ho )zr/E
for hi Q ho .

Table 6 compares the frequencies in 2(va2/ho )zr/E from the 3-D and 2-D
theories for four thin annular plates with linearly varying thickness in the radial
direction, whose geometries are represented by b/L=3/7 and ho /hi =0·2, 0·4, 0·6,
and 0·8, with Poisson’s ratio 0·3. It should be noticed that they did not give any
information about the ratio of the plate thickness to boundary radii because their
analysis was based upon the 2-D thin plate theory, so that hm /L is assumed to be
0·05 for the present comparison. In the table, there are three frequencies for each
annular plate obtained from the 3-D Ritz method (3DR) and the 2-D Ritz method
(2DR) [35], which correspond to three circumferential, flexural modes for n=0
(axisymmetric), 1, and 2. The percent different is given by

Difference (%)= (3DR−2DR)/3DR×100. (20)

It is observed from the table that the 3-D Ritz method yields lower frequencies
than the 2-D Ritz results in the fundamental (lowest) frequencies (occurring for
n=2) irrespective of the taper ratios, as expected. For the frequencies of n=0
and 1, as the thickness variation becomes smaller (i.e., the taper ratio ho /hi

increases), the absolute difference (%) between 2DR and 3DR becomes smaller
and then the 3DR results become smaller than the 2DR results. The maximum
difference (7·97%) occurs for n=0 (axisymmetric mode) when ho /hi =0·2. The
positive percent differences are unexpected, because an accurate 3-D analysis

T 6

Comparison of frequencies in 2(va2/ho )zr/E from the 3-D and the 2-D theories of
completely free, annular plates having linearly varying thickness along the radial

direction for b/L=3/7, hm /L=0·05 and n=0·3

ho /hi

ZXXXXXXXXXCXXXXXXXXXV
n Method 0·2 0·4 0·6 0·8

0(A) 3DR 4·39 4·35 4·49 4·73
2DR 4·04 4·22 4·45 4·73

Difference (%) (7·97) (2·99) (0·89) (0)

1 3DR 8·58 9·02 9·60 10·22
2DR 8·22 9·03 9·74 10·41

Difference (%) (4·20) (−0·11) (−1·46) (−1·86)

2 3DR 2·50 2·47 2·56 2·73
2DR 2·54 2·49 2·58 2·75

Difference (%) (−1·60) (−0·81) (−0·78) (−0·73)

Notes: 3DR0 the 3-D frequencies by the Ritz method; 2DR 0 the 2-D frequencies by the Ritz
method; values in parentheses are the percent difference between 3DR and 2DR.
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should typically yield lower frequencies than those from 2-D thin plate theory,
mainly because shear deformation and rotary inertia effects are accounted for in a
3-D analysis, but not in 2-D, thin plate theory.

6. CONCLUDING REMARKS

Extensive and accurate frequency data determined by the three-dimensional
Ritz analysis have been presented for thick, linearly tapered, annular plates. The
analysis uses the three-dimensional equations of the theory of elasticity in their
general forms for isotropic materials. They are only limited to small strains. No
other constraints are placed upon the displacements. This is in stark contrast with
the classical two-dimensional plate theories, which make very limiting assumptions
about the displacement variation through the plate thickness.

The method is straightforward, but it is capable of determining frequencies and
mode shapes as close to the exact ones as desired. It can therefore obtain
benchmark results against which 3-D finite element results may be compared to
determine the accuracy of the latter. Moreover, the frequency determinants
required by the present method are at least an order of magnitude smaller than
those needed by a finite element analysis of comparable accuracy.
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